Welcome to Chem Zipper.com......: Degree of Freedom and Law of Equipartion of Energy:

Search This Blog

Wednesday, December 18, 2024

Degree of Freedom and Law of Equipartion of Energy:

It is equal to number of modes of energy transfer when a gaseous molecule undergoes collision.                      OR

        It represent the number of independent modes to describe the molecular motion.  

       Total degree of freedom =  3N (Where N  is Number of atom in molecule)


1- Translational degree of freedom is 3 (three) always for mono, di and t     tri atomic molecule.
2- Rotational degree of freedom is zero for mono atomic gas2 (two) for diatomic molecules and   3 (three) for triatomic molecule

3-Vibrational degree of freedom is also zero for mono atomic gas and 1(one) diatomic gas molecule  and for polyatomic gases Vibrational DOF is calculated individually.( fvib= 3N- ftrans+ frot)

Total degree of freedom:=  ftrans + f rot + f vib    &  fvib= 3N- ftrans + f rot    


Molecules                N                      TDF
He                             1                         3
O2                                    2                         6
CO2                           3                         9
NH                           4                        12
PCl                          6                        18

Case-1

Monoatomic       Diatomic       Triatomic (linear)       Triatomic (Non linear)
total =3                ftotal  =6          ftotal =9                      f total=9
f trans=3                  ftrans =3            ftrans=3                     ftrans=3
f rot  =0                      frot     =2           frot    = 2                    frot    =3
f vib  =0                     fvib     =1           fvib    = 4                        fvib   =3

                              q =n CmdT

                                qV=n CvmdT

                                (Cm)v=(dq/dT)v

 By FLOT dq= dU+ dW     
At constant volume  dW=0   so   dqv=dU

                         Hence   ( Cm)V= (dU/dT)v

LAW OF EQUIPARTIAL OF ENERGY :
Average energy associate with each molecule per degree of freedom is U= 1/2KT  (where K is Boltz’s man constant.

Let degree of freedom is = f   then U is U=1/2fkT


             And U=1/2fkTNper molecule  we know  kNA=R

                     U=1/2fRT  and   dU/dT=1/2fR


             And  dU/dT=Cv      hence  Cv=1/2fR

Cv=1/2ftransR +1/2frotR  (Where Vib degree inactive in chemistry)

       For ideal gas Cpm-Cvm=R  and  Gama= Cpm/Cvm
         

Adiabatic exponent :Adiabatic exponent (Gama) for a mixture of gas with different heat capacity is defined as :
where n1, n2 ........................ are moles of different gases

Example: Calculate change in internal energy of 10 gm of H2 ,when it's state is changed from(300K, 1Atm) to (500 K, 2Atm) ?
Solution: For ideal gas

       
Cv for H2 (diatomic) in low temperature range will be 5R as vibrational part is not included.

No comments:

Post a Comment