Welcome to Chem Zipper.com......: PERIODIC TABLE

Search This Blog

Showing posts with label PERIODIC TABLE. Show all posts
Showing posts with label PERIODIC TABLE. Show all posts

Thursday, August 5, 2021

Penetration Effect: Penetration Power:

The probability of an electron which allows an electron to get close to the nucleus is known as penetration effect. It is known as the proximity of the electron in the orbital to the nucleus.

(1)  The relative penetration power of sub shells within same shell (same value of n) follow the order as:

                                        s>p>d>f

We consider it for each shell and sub shell as the relative density of the electrons near the nucleus of atoms. It is clear that the ‘S’ electrons have greater probability of coming closer to the nucleus than the P, d or f electrons of the same principal energy shell. 

(2) For different values of shell (n) and sub shell (l), decreasing penetrating power of an electron follows as:

             1s>2s>2p>3s>3p>4s>3d>4p>5s>4d>5p>6s>4f....

(3) In other words, ‘S’ electrons penetrate (more nearer) more towards the nucleus than the ‘P’ electrons and the penetrating power of the electrons in the given principal energy shell varies as S> P> d>f. Thus the ‘S’ electrons experience more attraction from the nucleus than the p d or f electrons of the same principal energy shell.

Therefore, greater energy required to remove out electron from‘s’ orbital than ‘p’, d and ‘f’ orbital. Thus the ionization potential for pulling out an ‘s’ electron is maximum  and it decreases in pulling out a p , d or f electron of the same principal energy shell.

(4) Ionization potential or Ionization enthalpy of an atom is directly proportional to penetration power of orbitals.

Application of Penetration effect:

Example: Ionization energy of Boron is smaller than Beryllium even though effective nuclear charge is higher?

Solution: The electronic configurations of Boron and Beryllium are (5B=1S2,2S2,2p1) and (4Be =1S2,2S2).

In Boron the outermost electron is present in the 2p orbital (low penetration power) and is less strongly bound than the electron present in a 2S orbital of Beryllium(Have more penetration power), which will has a higher Zeff. It is easier to ionize the Boron atom.

Related Questions:

(1) What are the Amphoteric metals ? gives Examples.

(2) Name of total metalloids present in periodic table ?

(3) Total numbers of elements which are liquid at normal temperature is ?

(4) What is Mendeleev's periodic table ? give important features and draw back of Mendeleev's table.

(5) What is atomic density ? give the periodicity of atomic density in periods and groups.

(6) What is atomic volume ? and what is periodicity of atomic volume in groups and periods ?

(7) Why there are 2, 8 and 8 elements in first, second and third periodic of periods table respectively ? Explain.

(8) In alkali metal group which is the strongest reducing agent in aqueous solution and why?

(9) The electron affinity of sulphur is greater than oxygen. Why?

(10) The first ionization energy of carbon atom is greater than that of boron atom, whereas reverse is true for the second ionization energy. Explain.

(11) The electronegativities of B, Al, Ga are 2.0, 1.5, 1.6 respectively. The trend is not regular. Explain.

(12) Li2CO3 decomposes on heating but other alkali metal carbonates don’t. Explain.

(13) Of all noble metals, gold has got a relatively high electron affinity. Explain.

(14) What are the increasing order of ioni radii of first group elements in water ?

(15) What are the increasing order of molar conductivity of first group elements in water ?

 

Metallic radius or Crystal radius:

Metallic radius or Crystal radius:

(1) The term crystal radius is used to denote the size of atoms in metal.

(2) Metal atoms are closely packed spheres in metallic crystal. The metal atoms are supposed to touch one another in crystal.

(3) Metallic radius is defined as one half the distances between the centres of the nuclei of two atoms in a metallic crystal.

(4) Metallic radius is determined by X-ray diffraction method.

(5) Metallic radii are about 10 to 15 % higher than the single bond covalent raddi of those elements. Thus single bond covalent radius is smaller than the metallic radius due to the no overlapping of atomic orbital in metallic bond.

Vander Waal’s radius > Metallic radius > Covalent radius

(6) For the simplicity the term atomic radius is used for covalent radius as well as metallic radius depending on whether the element is a non-metal or metal. However, the atomic radii of inert gases are expressed in the terms of Vander Waal’s radii.

(7) Metallic radius is inversely proportional to the metallic bond strength.

(8) More metallic radius –loose crystal packing-less bond strength. (BCC)

(9) Less metallic radius –Tight crystal packing (FCC) - high bond strength.(HCP)

(10) For non-metal, atomic radius means covalent radius.

(11) For metal, atomic radius means metallic radius.

(12) For inert gases, atomic radius means Vander Waal’s radius.


Vander Waal’s radius or Collision radius:


Related Questions:

(1) What are the Amphoteric metals ? gives Examples.

Vander Waal’s radius or Collision radius:

 (1) The Vander Waal’s radius is defined as one half of the distance between the nuclei of two adjacent identical atoms  belongging to two neighbouring molecules of an elements in the solid state.


(2) The name Vander waal’s radius is used because of the force existing between yhe molecules are the vander waal’s forceof attractions. And Vander Waal’s forces are directly proportional to the molecular weight or atomic weight (in inert gases).

(3) These force of are maximum in solid state and absent in gaseous condition. In liquid state the magnitute is very small so Vander waal’s radius determine in solid state only.

(4) The Vander Waal’s radii is also known as non bonded radii.

(5) The Vander Waal’s radii is determined by X-rays difffraction studies.

(6) In molecules of non-metals both covalent and Vander Waal’s radius exists.

(7) The Vander Waal’s radii is always greater than covalent radius of a given elements. And also greater than that of all known radius.

(8) The Vander Waal’s radius is generally two times of Covalent radius

            Vander Waal’s and Covalent radii of some elements in Angstrom.

Elements

H

N

O

F

Cl

Br

Vander Waal’s radius

1.2

1.5

1.4

1.35

1.80

1.95

Covalent  radius

0.35

0.75

0.73

0.72

0.99

1.14

(9) The noble gases do not from covalent bonds. Thus in crystal of noble gases no chemical forces operated between the atoms. It is only the Vander Waal’s forces prevailing in these atoms. Thus for noble gases in the solid state the crystal radii (atomic radii) are actually Vander Waal’s radii.

(10)   Vander Waal’s radius > Metallic radius > covalent radius.

Metallic radius or Crystal radius:

Trends:

(1) In a Period:

While we move from left to right along period, atomic radius generally decreases.

(2) In a Group:

In a given  group as one moves from top to bottom atomic radius increases.

Related Questions:

(1) What are the Amphoteric metals ? gives Examples.

Henry & Smith equation: Calculation of percentage (%) ionic character in covalent compounds?

The percentage ionic character in covalent compound arises due to the electronegative difference of bonding atoms. And percentage ionic character of covalent bond calculates by Henry and Smith equation;

Tuesday, July 27, 2021

Melting and boiling point and their periodic trends:

 Melting and boiling point:

(A) Melting point: The temperature at which  a solid material changes into the liquid material is called melting point and process is called melting.

(B) Boiling point the temperature at a liquid material changes into its vapour is called boiling point and the process is called boiling. 

(C) Lower atomic volume generally leads to higher density, increases hardness and brittleness, less malleability and ductility.

(D) Trends in groups: 

1- When we move top to bottom in group of S-Block, the melting point and boiling point decrease.

2- When we move top to bottom in all group of d-Block, the melting point and boiling point increases.

 3- While we move IIIA TO VIA Groups, the MP and BP decreases.

 4- While we move VA TO VIIA Groups, the MP and BP increases.

(E) Trends in period: 

When we move from left to right through periodic table the value of MP and BP first increases to maximum after decrease like density.

Related Questions:

(1) What are the Amphoteric metals ? gives Examples.

(2) Name of total metalloids present in periodic table ?

(3) Total numbers of elements which are liquid at normal temperature is ?

(4) What is Mendeleev's periodic table ? give important features and draw back of Mendeleev's table.

(5) What is atomic density ? give the periodicity of atomic density in periods and groups.

(6) Why there are 2, 8 and 8 elements in first, second and third periodic of periods table respectively ? Explain.

(7) In alkali metal group which is the strongest reducing agent in aqueous solution and why?

(8) The electron affinity of sulphur is greater than oxygen. Why?

(9) The first ionization energy of carbon atom is greater than that of boron atom, whereas reverse is true for the second ionization energy. Explain.

(10) The electronegativities of B, Al, Ga are 2.0, 1.5, 1.6 respectively. The trend is not regular. Explain.

(11) Li2CO3 decomposes on heating but other alkali metal carbonates don’t. Explain.

(12) Of all noble metals, gold has got a relatively high electron affinity. Explain.

(13) Ionization energy of Boron is smaller than Beryllium even though effective nuclear charge is higher?

(14) What are the increasing order of ioni radii of first group elements in water ?

(15) What are the increasing order of molar conductivity of first group elements in water ?

Effective Nuclear charge (Z* or Zeff): Slater's rule: Screening effect or Shielding effect

The decrease in the force of attraction exerted by the nucleus on the valence electrons due to the presence of electrons in the inner orbit is called “Screening effect or shielding effect”


Due to shielding effect of inner shell electrons on the outer shell electrons such that valence electrons feel less attraction from the nucleus. This decreased nuclear charge is known as effective nuclear charge (Z* or Zeff)

The Slater’s  rule determine the actual charge felt by an electron and also allow you to estimate the effective nuclear charge Zeff  from the real number of protons in the nucleus and the effective shielding of electrons in each orbital "shell"

“Slater defined Z* or Zeff (effective nuclear charge) as a measure of nuclear attraction for an electron. Or The magnitude of positive charge “experienced” by an electron in the atom.

                                              Thus Z* =Z-S

Where Z is the (nuclear charge)= The number of protons in the nucleus of an atom,  and S represent the shielding constant and value is greater than zero but less than Z.

Step 1: Write the electron configuration of the atom in the following form:

              (1s) (2s, 2p) (3s, 3p) (3d) (4s, 4p) (4d) (4f) (5s, 5p) . . .

Step (2):  Electron in higher group do not shield the electrons in the lower group.

Step (3): For ns and np valence electrons:

(A) The electrons in same ns and np group contribute 0.35, except the 1s which shield 0.30

(B) Electrons within the n-1 group contribute 0.85

(C) Electrons within the n-2 or lower groups contribute (shield) 1.00

Example(1) :  Calculate the Zeff (Z*) for 4s electron of chromium atom (Slater's Rule)?

Step (4): For nd and nf valence electrons:

(A) Electrons in same nd and nf group contribute 0.35

(B) Electrons in the group to the left contribute 1.00

Shielding constant (S) obtained is subtracted from Z to get Z*

Example(2) :What is the shielding constant (S) experienced by a 3d electron in the bromine atom?


Periodicity in Z* or Zeff:

(A)  In a period: When we move from left to right in period the Z* increases.

2nd (P)

Li

Be

B

C

N

O

F

Z*/Zeff

1.30

1.95

2.60

3.25

3.90

4.25

5.20

 

(B)  In a Group: When we move from top to bottom the Z* remains constant,

1st gp

Li

Na

K

Rb

Cs

Z*/Zeff

1.30

2.20

2.20

2.20

2.20


Related Questions:

(1) What are the Amphoteric metals ? gives Examples.

(2) Name of total metalloids present in periodic table ?

(3) Total numbers of elements which are liquid at normal temperature is ?

(4) What is Mendeleev's periodic table ? give important features and draw back of Mendeleev's table.

(5) What is atomic density ? give the periodicity of atomic density in periods and groups.

(6) What is atomic volume ? and what is periodicity of atomic volume in groups and periods ?

(7) Why there are 2, 8 and 8 elements in first, second and third periodic of periods table respectively ? Explain.

(8) In alkali metal group which is the strongest reducing agent in aqueous solution and why?

(9) The electron affinity of sulphur is greater than oxygen. Why?

(10) The first ionization energy of carbon atom is greater than that of boron atom, whereas reverse is true for the second ionization energy. Explain.

(11) The electronegativities of B, Al, Ga are 2.0, 1.5, 1.6 respectively. The trend is not regular. Explain.

(12) Li2CO3 decomposes on heating but other alkali metal carbonates don’t. Explain.

(13) Of all noble metals, gold has got a relatively high electron affinity. Explain.

(14 Ionization energy of Boron is smaller than Beryllium even though effective nuclear charge is higher?

(15) What are the increasing order of ioni radii of first group elements in water ?

(16) What are the increasing order of molar conductivity of first group elements in water ?