Search This Blog
Saturday, September 29, 2018
RELATIONSHIP BETWEEN DH and DU
The difference between dH and dU becomes significant only when gases are involved (insignificant in solids and liquids)
DH = DU + D(PV)
If substance is not undergoing chemical reaction or phase change.
we know PV=nRT
PDV=DnRT
hence
DH = DE + DnRT
In case of chemical reaction
DH = DE + DngRT
Where Dng=number moles of product in gaseous state - number moles of reactant in gaseous state
Dng =(nP-nR)g
case-(1) If Dng=0 then DH = DE
case-(2) If Dng>0 then DH > DE
case-(3) If Dng<0 then DH < DE
SOLUTION: DH = DU + D(PV)
D(PV) = P2V2 – P1V1
= 4 × 30 – 2 × 40
= 40 liter -bar = 4 kJ
so DH = 35 + 4 = 24 kJ
EXAMPLE (2).: What is the relation between DH and DE in this reaction?
CH4(g) + 2O2(g) ---------> CO2(g) + 2H2O(l)
SOLUTION: DH = DE + DnRT
Dn = no. of mole of products - no. of moles of reactants = 1– 3 = –2
DH = DE – 2RT
EXAMPLE(3):
Consider the chemical
reaction at 300 K H2 (g)+Cl2
à2HCl(g) ΔH= -185KJ/mole calculate ΔU if
3 mole of H2 completely react
with 3 mole of Cl2(g) to form HCl.
SOLUTION: H2
(g)+Cl2 à2HCl(g)
ΔH= -185KJ/mole
Δng=0
ΔH= ΔU+
ΔngRT
ΔH= ΔU
ΔHR= -185 KJ/mole ,ΔUR=
-185 KJ/mole
H2 (g)+Cl2
à2HCl(g) ΔH= -185KJ/mole
3 mole 3 mole
Hence ΔU= -185 X 3
KJ/Mole
EXAMPLE (4): The heat of combustion of naphthalene
(C10H8(s)) at constant volume was measured to be . 5133 kJ mol.1 at 298K.
Calculate the value of enthalpy change (Given R = 8.314 JK.1 mol.1).
SOLUTION: The combustion reaction of naphthalene.
C10H8(s) + 12O2(g) à10CO2(g) + 4H2O(l)
ΔE = -5133kJ
Δn = 10 -12 = -2 mol.
Now applying the relation.
ΔH = ΔE + (Δn) RT
= -5133 × 103 + (-2) (8. 314) (298)
= -5133000J - 4955.14J
= -5137955. 14 Joule
EXAMPLE(5) What is the true regarding complete
combustion of gaseous isobutene –
(A) ΔH = ΔE (B) ΔH > ΔE (C) ΔH = ΔE = O (D) ΔH < ΔE
SOLUTION: (D) C4H10(g) + 6.5O2
(g) à4CO2(g)
+ 5H2O(l)
Δn = [4 -7.5] = -3.5
ΔH = ΔE + ΔngRT
Δ H < ΔE
EXAMPLE (6): For a gaseous reaction: 2A2 (g) +
5B2(g) à2A2B5(g)
at 27ºC the heat change at constant pressure is found to be .50160J. Calculate
the value of internal energy change (ΔE). Given that R = 8.314 J/Kmol.
(A) -34689 J (B) -37689 J (C) -27689 J (D) -38689 J
SOLUTION : 2A2(g) + 5B2(g) à 2A2B5 (g); ΔH= -50160 J
Δ n = 2-(5 + 2) = -5 mol.
ΔH = ΔE + (Δn) RT
-50160 = ΔE + (Δn) RT
Δ E = -50160- (-5) (8.314) (300)
= -50160 + 12471 = -37689 J
The answer is (B)
Subscribe to:
Posts (Atom)