Welcome to Chem Zipper.com......

Search This Blog

Friday, November 30, 2018

PERCENTAGE (%) AVAILABLE CHLORINE IN BLEACHING POWDER:

Bleaching powder is not a true compound but it is a mixed salt of calcium hypochlorite [Ca (OCl) 2].3H2O and basic calcium chloride [CaCl2Ca (OH) 2H2O]. [Simply it is represented by CaOCl2.
The bleaching action of [CaOCl2] is due to liberation of oxygen with limited quantity of dilute acid.                                                                                                        

Whereas disinfectant action available of Cl2 on reaction with excess of acid.
The Chlorine liberates is called available Chlorine, and calculation of available Chlorine is called IODOMETRY.

IODOMETRIC-CALCULATION OF AVAILABLE % CHLORINE: Take a W (gm) sample of bleaching powder; and  when bleaching powder treated with dilute acid or water then liberates chlorine gas.
The chlorine produced in above reaction is titrated with KI solution which produced (I2) Iodine which is further completely titrated with hypo solution.                                          

If number of millimoles of hypo solution consume is M V then millimoles of %available chlorine is calculated as ;
                            Millimoles of Iodine is =1/2 Millimoles Hypo solution
                            Millimoles of Iodine is = Millimoles chlorine
Weight of available chlorine is = Number of moles x molecular Wt of Chlorine 
ILLUSTRATIVE EXAMPLE(1): If trace of chlorine are not remove from pulp used for paper manufacturing , then on the long standing it weaken the paper and makes it yellowish , which of following antichlor can be used to remove chlorine from pulp ?.
(A) Na2S2O3        (B) conc. HCl            (C) NaHCO3           (D) Both (A) and (B)
SOLUTION:
An antichlor  is a substance used to decompose residual hypochlorite or chlorine after use of chlorine based bleaching , in order to prevent ongoing reactions .example s of antichlor – Sodiumbisulphite (NaHSO3), Pottassiumbisulphite (KHSO3) ,  Sodiummetasulphite (Na2S2O3), Sodiumthiosulphate  (Na2S2O3) and hydrogen peroxide (H2O2).
ILLUSTRATIVE EXAMPLE (2): Available chlorine in sample of bleaching powder can be calculated as per the following reactions.
If 4 gm of bleaching powder dissolved to give 100 ml solution 25 ml of it react with excess of CH3COOH and KI .The Iodine liberation required 10 ml of 0.125 N Hypo solutions. Calculate % of available chlorine in the sample.
(A)  21%                       (B) 35 %                     (C) 45 %             (D) 4.4%
SOLUTION:
ILLUSTRATIVE EXAMPLE (3): Calculate the % of available chlorine in the sample in a sample of 3.35 gm of bleaching powder which was dissolved to 100 ml water. 25 ml of this solution on treatment react with KI and dilute acid. Required  20 ml 0.125 N Hypo solution (Sodiumthiosulphate- Na2S2O3). 
SOLUTION:
ILLUSTRATIVE EXAMPLE (4): 25 ml of household bleach solution was mixed with 30 ml of 0.50 M KI and 10 ml of 4.0N acetic acid. In this titration of the liberated iodine 48 ml of 0.25 N Na2S2O3 was used to reach the end point. The Molarity of household bleach solution is?
SOLUTION:

Wednesday, November 14, 2018

PH OF POLYPROTIC ACIDS:

The acids which are capable to furnish more than one protons to water are called polyprotic acids or polyprotic acids are those acids which have more than one acidic hydrogen.
For examples

Polyprotic  acids are dissociate in steps wise with different value of dissociation constant for each step for example carbonic acid is dissociate in two steps as-
Step-1 

Step-2 

Over all reaction 

Experimentally known that for typical Polyprotic acids Ka1>> Ka2 as result all the H+ is due to the first acid ionization.
These dissociation constant also illustrate simultaneous equilibria in the acid dissociation of poly acids both are happening at same time , so both anions HCO3-1 and  CO3-2 are present in equilibrium mixture in solution.
PH CALCULATION OF POLYPROTIC ACIDS:

Consider a general triprotic acid (H3A) and dissociate in three steps
Step-1 
Experimentally we know that   Ka1>>Ka2>>Ka3, hence x >>y>>Z   so y and z can be neglected with respect to x 
                   This is the quadratic equation solve by following formulae
Step-2   
Experimentally we know that   Ka1>>Ka2>>Ka3, hence x>>y>>Z    So y and z can be neglected with respect to x and the x present in denominator and numerator both  are cancelled .
Step-3   
Experimentally we know that   Ka1>>Ka2>>Ka hence   x >>y>>Z, So y and z present in numerator can be neglected with respect to x and the z present in denominator is also neglected with respect to y.

Finally -  
And concentration of different species:
In such cases following assumption are applicable. In generally Ka1 >> Ka2 >> Ka3
x >> y >> z     [H+] = x, [H2A¯ ] = x,  [HA2–] = y,  [A3–] = z, [H3A] = c – x
  
ILUUSTRATIVE EXAMPLE (1):     0.1M H3X,
 find the concentration of (X-3 ) ?.
 SOLUTION:  We know that:  
Calculate the value of (z) by solving these three equations (z) =10-19 
ILUUSTRATIVE EXAMPLE (2): Calculate the concentration of all species of significant contribution present in 0.1M H3PO4 Solution.(Given ka1 7.5×10-3,Ka2 6.2×10-8 and Ka3 3.6×10-13)
ILUUSTRATIVE EXAMPLE (3): Calculate concentration of (a) H+ (B) HCO3-1 (C) CO3-2 (D) DOD of HCO3-1 in 0.1M aqueous solution.(Given for Ka1=1.6x10-7  Ka2=4x10-11).
ILUUSTRATIVE EXAMPLE (4): Find concentration of (a) H+ (B) HCO3-1 (C) CO3-2 in 0.01M aqueous  solution of carbonic acid if pH of the solution is 4.18, .(Given for Ka1=4.45x10-7  Ka2=4.69x10-11).
ILUUSTRATIVE EXAMPLE (5): Consider the acid dissociation of 0.25 M H2CO3. What are the concentration of all species in equilibrium in each stage and pH?                                                       
Answer key
(2) (H+=HPO3-1) = 0.0273 M, H3PO4= 0.1- x= 0.0727M, PO4-3=8.26x10-19
(3) H+= 4.0x10-5 M, HCO3-1= x-y=4.0x10-5 M   DOD= 10-6
(4) H+=6.6x10-5 x=2.1095x10-5, y =CO3 -2=ka2=4.69x10-11 M
(5) H+=x=3.24x10-4 M , HCO3-1=x= 3.24 x10-4 M
                                               @@@