Welcome to Chem Zipper.com......

Search This Blog

Monday, August 12, 2019

CRYSTAL FIELD STABILISATION ENERGY (CFSE):

The difference in energy of eg and t2Orbitals are called crystal field stabilisation energy (CFSE):
Where m and n = are number of electrons in t2g and eg orbitals respectively and del.oct is crystal field splitting energy in octahedral Complexes.
l = represents the number of extra electron pair formed because of the ligands in comparison to normal degenerate configuration.
P= (Pairing energy) the energy required for electron pairing in a single orbital. The actual configuration of complex adopted is decided by the relative values of delta and P
Case (1): If del.oct is less than P :
We have so called weak field or high spin situation, the fourth electron entered one of the eg orbitals giving configuration (
t2g3 and eg1)
If now 
5th electron is added to a weak field the configuration become  (t2g3 and eg2).
Case (2): If del.oct  is more than P: we have the strong field , low spin situation and pairing will occur in the t2g level with eg level remaining unoccupied in entities of d1 and d6 ions .

Calculation shows that coordination entities with four to seven d electron are more stable for strong field as compared to weak field cases.
(A)For configuration (d0, d1, d2, d3, d8, d9, d10):

SN
METAL ION
EXAMPLE
CONF IN L.F
CFSE(del.oct)
1
d0
Sc3+
t2g 0,0,0  eg 0
=0.0
2
d1
Ti3+
t2g 1,0,0 eg 0
=-0.4
3
d2
V3+
t2g 1,1,0 eg 0
=-0.8
4
d3
Cr3+ , V2+
t2g1,1,1  eg 0
=-1.2
5
d8
Ni2+
t2g 2,2,2  eg1,1
= -2.4 +1.2+ 3P
=-1.2+3P
6
d9
Cu2+
t2g2,2,2  eg 2,1
=-2.4 +1.8+4P
=-0.6+ 4P
7
d10
Zn2+
t2g2,2,2  eg 2,2
=-2.4 +2.4+ 5P
=  5P

Therefore, for the above configurations, there is no effect of the nature of ligand. They may be strong or weak; the formula for CFSE will remain the same.

(A)For configuration (d4, d5, d6, d7):

SN
METAL ION
EXAMPLE
CONF IN L.F
CFSE(del.oct)
1
d4
Cr2+ (S.L.)

Cr2+ (W.L.)
t2g 2,1,1  eg 0,0

t2g 1,1,1  eg 1,0
=-1.6  +1P

=-1.6
2
d5
Mn2+,Fe3+(S.L.)

                 (W.L)
t2g 2,2,1  eg 0,0

t2g 1,1,1  eg 1,1
=-2.0+2P

=0.0
3
d6
Co3+,Fe2+(S.L.)

                (W.L.)
t2g 2,2,2 eg 0,0

t2g 2,1,1 eg 1,1
=-2.4 +3P

=-0.4+ 1P
4
d7
Co2+ (S.L.)

         (W.L.)
t2g2,2,2  eg 1,0

t2g2,2,1  eg 1,1
=-1.8+3 P

-0.8+2P


Crystal field stabilisation energy (CFSE) in Tetrahedral:
The difference in energy of eg and t2g Orbitals are called crystal field stabilisation energy (CFSE) in tetrahedral complexes:

Where m and n = are number of electrons in t2g and eg orbitals respectively and del.oct is crystal field splitting energy in octahedral Complexes.
l = represents the number of extra electron pair formed because of the ligands in comparison to normal degenerate configuration.
P= (Pairing energy) the energy required for electron pairing in a single orbital. The actual configuration of complex adopted is decided by the relative values of delta and P

HYBRIDISATION AND GEOMETRY:

SN
CN
Hybridisation
Geometry
Bond angle
Examples
1
2
Sp
Linear
180
[Cu(CN)2]-, [Ag(CN)2]-, [Au(CN)2]-, [Ag(Cl)2]-,
[Ag(NH3)2]+,
2
3
Sp2
Trigonal planer
120
[Hg(I3)2]2-,
3
4
Sp3
Tetrahedral
109. 28
[Ni(Cl)4]2-,[Zn(NH3)4]2+,
[Cd(CN)4]2-,[Hg(I)4]2-,
[Ag(S2O3)2]2,[Co(SCN)4]2
4
4
d3S                    /dxy,dyz,dzx,S
tetrahedral
109.28
CrO42-, MnO41-, MnO42-
VO43-, Cr2O72-
5
4
dsp2             /dx2-y2Sp3
Square planer
90
[Ni(en)2]2+,[Cu(NH3)4]2+,
[Ag(F)4]1-,[Pt(Cl)4]2-,
[Au(F)4]1-,[Pd(H2O)4]2+,
[Ni(dmg)2]
6
5
dz2Sp3                       / Sp3dz2
TBP
120, 90
[Fe(CO)5] , [Mn(CO)5] ,
[Cu(Cl)5]3
7
5
dx2-y2Sp3
Square pyramidal
90, 90
[Ni(CN)5] 3-
8
6
d2Sp3               /dx2-y2,dz2Sp3
Octahedral
90, 90
[Cr(NH3)6] 3+ , [NiF6] 2- ,
[Co(H2O)6] 3+ , [IrF6] 3-,
[Rh(H2O)6] 3+ , [Ptcl6] 2- ,
[Pd(H2O)6] 4+,[Co(NH3)6] 3+
9
6
Sp3d2                          / Sp3 dx2y2,dz2
Octahedral
90, 90
[Fe(NH3)6] 2 ,[Fe(H2O)6] 3+  
[Cr(H2O)6]2,[Ni(en)3]2+
[Mn(NH3)6] 2+