Welcome to Chem Zipper.com......

Search This Blog

Wednesday, October 31, 2018

SALTS AND SALT HYDROLYSIS

(1) Salts are the compounds formed by neutralization between acids and bases which are containing at least one positive part (Cation) other than H+ and also at least  one Negative part (Anion) other than OH-.

(2) Salts may taste salty, bitter, a stringer or sweet or tasteless

(3) Solution of salts may be acidic, basic or neutral.

(4) Fused salts and their aqueous solutions conduct electricity and undergo electrolysis

(5)The salts are generally crystalline solids

CLASSIFICATION OF SALTS:

These salts may be classified into four categories.

(A) SIMPLE SALTS:

The salts formed by the neutralization process between acid and base. These are of three types.

(1) Normal salt:     

The salt formed by the loss of all possible protons (replaceable H+ ions)

For example NaCl, NaNO3, K2SO4, Ca3 (PO4)2, Na3BO3, Na2HPO, NaH2PO2 etc.

(2) Acidic salts:

Salts formed by incomplete neutralization of polybasic acid. Such salts contain one or more replaceable H atom.

For examples NaHCO3, NaHSO4, NaH2PO4, Na2HPO4 etc.

Above salts when neutralised by base form normal salts.

(3) Basic salts:

Salts formed by incomplete neutralization of poly acidic bases are called basic salts. These salt contain one or more hydroxyl groups.basic salt when neutralised by acids form normal salts.

Ex. Zn(OH)Cl,  Mg(OH)Cl,  Fe(OH)2Cl, Bi(OH)2 etc.

(B) DOUBLE SALTS:

(1)The addition compounds formed by the combination of two simple salts are termed as double salts.

(2) Double salts are stable in solid state only.

(3) When dissolved in water, it furnishes all the ions present in the simple salt form which it has been constituted.

(4)The solution of double salt shows the properties of the samples salts from which it has been constituted

For examples

Mohar’s salt-FeSO4 (NH4)2SO4 .6H2O (Ferrous ammonium sulphate)

Alum’s- K2SO4Al2 (SO4)3. 24H2O (Potassium ammonium sulphate)

Karnalite- KCl.MgCl2.6 (H2O)

Dolomite- CaCO3.MgCO3 or CaMg (CO3)2

(C) COMPLEX SALTS:

(1) Complex salts are formed by combination of two simple salts or molecular compounds.

      For examples   K4Fe (CN)6, Co(NH3)6 SO4 etc.

(2) Complex salts are stable in solid states as well as solutions

(3) Complex salts On dissolving in water, if furnishes a complex ion.

(4) The properties of the solution are different from the properties of the substance from which it has been constituted.

(D) MIXED SALTS:

(1)The salt which furnishes more than one cation or more than one anion when dissolved in water is Called mixed salt.

FOR EXAMPLE - CaOCl2, NaKSO4, NaNH4HPO4 etc.

SALT HYDROLYSIS:

[1] ANIONIC SALT HYDROLYSIS:
[2] CATIONIC SALT HYDROLYSIS:
[3] CATIONIC AS WELL AS ANIONIC HYDROLYSIS:

[4] Amphoteric salt hydrolysis:


Tuesday, October 30, 2018

BUFFER SOLUTION

Topics cover :
(1) DEFINITION
(2)TYPE OF BUFFER SOLUTION
(3) pH OF ACIDIC BUFFER
(4) pH OF BASIC BUFFER
(5) DILUTION OF BUFFER
(6) BUFFER CAPACITY OR BUFFER  INDEX
(7) IDEAL BUFFER SOLUTION
(1) DEFINITION:
The aqueous electrolyte solution which resist the any change in pH even after addition of small amount of strong acid or strong base  called  buffer Solution.
(2)TYPE OF BUFFER SOLUTION:
(1) Simple Buffer Solution or Neutral buffer
(2) Mixed Buffer Solution
(3) pH OF ACIDIC BUFFER:
(4) pH OF BASIC BUFFER:
(5) DILUTION OF BUFFER:
(6) BUFFER CAPACITY OR BUFFER  INDEX:
(7) IDEAL BUFFER SOLUTION:
ILLUSTRATIVE EXAMPLE (1):
Pkb(NH4OH) is 5 and a buffer solution contains 0.1M NH4OH and 0.1M (NH4)SO4 calculate pH of this buffer solution ?
(Ans-5.3 )
ILLUSTRATIVE EXAMPLE (2):
Pls of HX is 4.7 , (1) find the pH of Solution having 0.5 M HX and KX 0.25M ? (2) pH of this solution if it is diluted 10000 times ?
(Ans- (1) 4.4 (2) )
ILLUSTRATIVE EXAMPLE (3):
Calculate pH of acidic buffer mixture containing 1.0 M HA (Ka=1.5x10-1) and 0.1M NaH .
(Ans- 0.824)
ILLUSTRATIVE EXAMPLE (4):
Calculate the mass of NH3 and NH4Cl required to prepared a buffer solution of pH  =9.0 when total  concentration of buffering reagents is 0.6 mole /litre .( Pkb for NH3 is 4.7, log2 is 0.3010)
(Ans- a=0.2 mole ,b=0.4 mole)
ILLUSTRATIVE EXAMPLE (5):
One liter buffer solution is prepared by mixing of 1.0 mole HCOOH (formic acid) and 1 mole HCOONa . (Given Pka HCOOH =4.0) then calculate
(i) pH of buffer
(ii) pH of Solution if 1/3 mole of HCl is added
(iii) pH of Solution if 1/3 mole of NaCl is added
(iv) pH of Solution if it diluted to 10 liter
(v) pH of Solution if it diluted to 1000 liter
(Ans- i-4.0 , ii- 3.7 , iii-4.3010 , vi- 4.0 v- 4.07)
ILLUSTRATIVE EXAMPLE (6):
Calculate the pH of an aqueous solution originally containing 0.4 M acetic acid and 0.2 M sodium acetate (ka CH3COOH= 1.8x10-5 ).
(Ans- 4.4)
ILLUSTRATIVE EXAMPLE (7):
Calculate pH of Solution Originally having 0.2 M (NH4)SO4 and 0.4 M NH4OH (given Kb NH4OH =1.8x10-5)
(Ans- 9.26)
ILLUSTRATIVE EXAMPLE (8):
In 100 ml of 0.4M C6H6COOH Solution,0.1M C6H6COONa is added , calculate pH of resulting solution (given Ka C6H6COOH is 4x10-5)
(Ans-4.1)
ILLUSTRATIVE EXAMPLE (9):
A solution contains 0.2 mole acetic acid and 0.10 mole of sodium acetate ,made up to 10 liter volume , calculate the pH of Solution ( given Ka CH3COOH is 1.8x10-5)
(Ans-4.44)
ILLUSTRATIVE EXAMPLE (10):

What mass of , in gram ,of NaNO2 must added to 700 ml of 0.165 M HNO2 to produce a Solution with pH of 3.50 ? ( Ka HNO2 is 6.0x10-4)
(Ans- 15.1gm)
ILLUSTRATIVE EXAMPLE (11):
In 500 ml of a buffer solution containing 0.8 M CH3COOH and 0.6 M CH3COONa , 0.2 M HCl is added. Calculate the pH of Solution before and after adding HCl. (Ka CH3COOH is 1.8x10-5) .
(Ans- i - 4.62  ii- 3.96)
ILLUSTRATIVE EXAMPLE (12):
A mixture of 0.2 mole RNH2 and 0.4 mole RNH3Cl is  mixed .the volume of Solution prepared is 10 liter  (given Kb RNH2 is 10-5) calculate.
(i) pH of resulting solution
(ii) pH of Solution if diluted to 1000 litres
(iii) pH of Solution if 200 ml buffer is mixed with 2 milimoles of H+
(iv) pH of Solution if 200 ml buffer is mixed with 2 milimoles of OH-
(Ans- i-  5.30 , ii- 5.31 , ii- 8.3 , iv -9.0)

Tuesday, October 23, 2018

BRONSTED LOWERY ACID-BASE CONCEPT

According to Bronsted theory the species which donate protons (H+) in any medium is consider as acid and the species which accept proton is consider as base.
Acid and base characters are realised in the presence of each other.
For example
CONJUGATE ACID-BASE PAIRS
(1) conjugate pair is acid-base pair differing in single proton (H+)
(2) conjugate acid is written by adding  H+ and conjugate is written by removing H+
.
(3) Strong acid has weak conjugate base and vice versa. Similarly strong base has weak conjugate and vice versa.

(4) Equilibrium always moves from strong acid to weak acid and strong base to weak base.


(5) Conjugate acid - base pair differ by only one proton. Reaction will always proceed from strong acid to weak acid or from strong base to weak base.
MERITES OF BRONSTED CONCEPT:
(1) the role of solvent clearly defined.
(2) the acidic and basic  character may be observed in non aqueous medium also .
(3) the acidic ,basic or Amphoteric nature of most of the substance may be defined.
(4) the acid having greater tendency to donate protons are stronger acid and base  having greater tendency to accept protons are stronger base .
(5)In conjugate pair ,if one is strong then other must be weak .
The weak acid or base are normally determined by comparing the the stability of different acid or base
DEMERITES OF BRONSTED CONCEPT:
(1) Proton is a nuclear particle hence reaction should not explained in term of proton.
(2) the neutralized process becomes multiples step process.
(3) Most of the Amphoteric solvent become Amphoteric.


AMPHOTERIC SPECIES (Amphiprotic):
The species which have a tendency to donate proton as well as accept proton (H+) such species are known as Amphoteric species.
For example H2
O,NH3 HS- ,HPO3- ,HC2OO4- , H2O4 etc

ILLUSTRATIVE EXAMPLES:
(1)The conjugate base of HCO3 is –
  (A) H2CO3        (B) CO2             (C) H2O      (D) CO3 
(2) The conjugate acid of HSO3- is -
  (A) SO32-          (B) SO42-                  (C) H2SO4    (D) H2SO3

(Ans: 1-D 2-D)
                                                                 @@@

ARRHENIUS ACID-BASE CONCEPT

CHARACTERS OF ACIDS:
(1) acids convert blue litmus to red and methyl orange  indicator to  red .
(2) Sour in taste.
(3) It liberate hydrogen gas with active metals.
(4) Acids neutralised the effect of base 
(5) acids increases the conduction of water.
CHARACTERS OF BASES:
(1) bases convert the red litmus to blue and methyl orange indicator to yellow.
(2) Phenylphthlene indicator (white) to pink.
(3) Bitter in taste and soapy in touch.
(4) Bases neutralised the effect of acid.
(5) They increases conductance of water.
ACID BASE CONCEPT:
(1) ARRHENIUS ACID-BASE CONCEPT
(2) BRONSTED LOWERY ACID-BASE CONCEPT 

(3) LEWIS ACID-BASE CONCEPT

(1) ARRHENIUS ACID-BASE CONCEPT
the substance which produces H+ in aqueous solution is consider as acid and the substance which give produces OH- in aqueous solution is consider as base
Arrhenius theory depend upon dissociation of water.







Type of Arrhenius acids:

Type of Arrhenius Bases :
         

Feature of Arrhenius theory:

(1) OH¯ ion is present also in hydrated form of H3O2¯, H7O4¯, H5O3¯
      H+ ion is present also in hydrated form of H3O+, H5O2+, H7O3+, H9O4+
(2) Neutralisation reaction can be easily explain by the Arrhenius theory .acids furnishing H+ ion  in water to large extent are strong acid.

Strength of acid or base:

(3) If Ka increases then concentration of H+ increases hence acidic strength is increases.
Similarly the base furnishing OH- ions to the large extent are strong base
Kb is dissociation constant for bases, if Kb is increases OH- increases, hence basic strength of base

(4)The term strong is used only for those acids or bases or bases which dissolved almost completely in water.

LIMITATIONS OF ARRHENIUS THEORY
(1) This theory explain nature of a substance only aqueous medium . It cannot be applied for non aqueous solution.
(2) It could not explain formation of hydronium ions like H3O- , H5O2- , and H7O3- .
(3) the nature of aqueous solution of AlCl3, CuSO4 ,BF3, B(OH)3 etc are acidic and aqueous solution of NH3 ,NaCO3 ,RNH2 R2NH,  R3N , C2H5N  etc are basic in nature cannot be explain by Arrhenius Concept.
(4) there are many  Amphoteric hydroxide Zn(OH)2  Al(OH)3 ,Pb(OH)2 , which cannot be  explain  by Arrhenius Concept.
(5) Arrhenius explain only when H+ is released it cannot explain when H+ is taken.
                                                 

Sunday, October 21, 2018

SPONTANEOUS AND NON SPONTANEOUS PROCESS

SPONTANEOUS PROCESS: Those process which have natural tendency to take place ,they may or may not require initiation.
For example
(1) Flow of water from higher level to lower level .
(2) Flow of heat from high temperature to lower temperature.
(3) Radioactivity
(4) Cooling of cup of tea .
(5) Evaporation
(6) Condensation 
(7) Sublimation
(8) Burning of candle
(9) Dissolution of salt and sugar in water
(10) Burning of fuel
(11) melting of ice at room temperature.
NON SPONTANEOUS PROCESS: All spontaneous processes are non spontaneous processes in reverse direction it requires spot of external energy for their progress.
CRITERIA FOR SPONTANEITY:
(1) If dS universe is greater than Zero  then process is spontaneous (reversible)
(2) If dS is Zero then process is in reversible state of equilibrium
(3) If dS is lower than Zero then  process is non spontaneous
For  a spontaneous process entropy of univers is greater than Zero . In order to use entropy has a sole criteria , we need to have information about system as well as surrounding.
dS(system) + dS(surr) is greater than  Zero
.
.
.
.
In order to explain the spontaneous behaviour by using the parameters of system we can established  two criteria.
(1) Randomness
(2) Criteria of energy
A spontaneous process is one in which energy ( enthalpy) decreasing and Randomness of system increasing.
For spontaneous proceDH=-ve and dS=+ve