No of equivalent of A reacted = No of equivalent of B
reacted = No of equivalent of C formed = No of equivalent of D formed
RELATION BETWEEN NORMALITY (N) AND MOLARITY (M):
SOME COMMON OXIDISING AGENT:
SOME COMMON REDUCING AGENT:
ILLUSTRATIVE EXAMPLE (1): Calculate the moles
of KMnO4 required to reacting with 180 gm of Oxalic acid (H2C2O4).
Also calculate the volume of CO2 at STP produce in the reaction? (K=39, Mn=55,
Of=16)
SOLUTION:
ILLUSTRATIVE EXAMPLE (2): Calculate the weight of K2Cr2O7
which reacts with KI to liberate 254 gm of I2 ?.(Cr=51.9961, I=127)
SOLUTION:
ILLUSTRATIVE EXAMPLE (3): Calculate volume of 0.05 M KMnO4 required to
react with 50 ml of 0.1M H2S in acidic medium , given H2S
oxidized to SO2?.
SOLUTION:
ILLUSTRATIVE EXAMPLE (4): Calculate the mass of Fe3O4 required
to react completely with 25 ml of 0.3 M K2Cr2O7?.
SOLUTION:
ILLUSTRATIVE EXAMPLE (5): Calculate the concentration of H2O2 if
20 ml H2O2 Solution react with 10 ml of 2M KMnO4
in acidic medium ?
SOLUTION:
ILLUSTRATIVE EXAMPLE (6): Calculate the moles of KCl which required to produce 10 ml
of Cl2 when reacted with KClO3 ?
SOLUTION:
ILLUSTRATIVE EXAMPLE (7): Calculate the moles of KMnO4 required for Oxidation of 1.25 moles Cu2S.
ILLUSTRATIVE EXAMPLE (7): Calculate the moles of KMnO4 required for Oxidation of 1.25 moles Cu2S.
SOLUTION:
ILLUSTRATIVE EXAMPLE (8): Calculate the Molarity of H2O2 if 11.2 ml H2O2 require 30 ml of 0.5 M K2Cr2O7 for its Oxidation . also calculate the volume of strength of H2O2.
ILLUSTRATIVE EXAMPLE (8): Calculate the Molarity of H2O2 if 11.2 ml H2O2 require 30 ml of 0.5 M K2Cr2O7 for its Oxidation . also calculate the volume of strength of H2O2.
SOLUTION:
ILLUSTRATIVE EXAMPLE (9): 696 gm of Fe2O3 and FeO reacts completely with 158 gm of KMnO4 in acidic medium . Calculate the composition of mixture.
ILLUSTRATIVE EXAMPLE (9): 696 gm of Fe2O3 and FeO reacts completely with 158 gm of KMnO4 in acidic medium . Calculate the composition of mixture.
SOLUTION:
ILLUSTRATIVE EXAMPLE (10): 829 gm of K2Cr2O7 and H2C2O4 reacts completely with 7/3 moles of K2Cr2O7 .
(1) Calculate the moles of each in mixture.
(2) Calculate the moles of NaOH required to react with above mixture.
ILLUSTRATIVE EXAMPLE (10): 829 gm of K2Cr2O7 and H2C2O4 reacts completely with 7/3 moles of K2Cr2O7 .
(1) Calculate the moles of each in mixture.
(2) Calculate the moles of NaOH required to react with above mixture.
SOLUTION:
ILLUSTRATIVE EXAMPLE (11): 50ml of KMnO4 is mixed with excess of KI the I2 liberated require 30 ml of 0.1M Na2S2O3 solution calculate the Molarity of KMnO4 solution.
ILLUSTRATIVE EXAMPLE (11): 50ml of KMnO4 is mixed with excess of KI the I2 liberated require 30 ml of 0.1M Na2S2O3 solution calculate the Molarity of KMnO4 solution.
SOLUTION:
ILLUSTRATIVE EXAMPLE (12): 50 Cm3 of 0.04 M K2Cr2O7 in acidic medium oxidized a sample of H2S gas to Sulphur . The volume of 0.03 M KMnO4 required to Oxidize the same amount of H2S gas to Sulphur, in acidic medium is.
ILLUSTRATIVE EXAMPLE (12): 50 Cm3 of 0.04 M K2Cr2O7 in acidic medium oxidized a sample of H2S gas to Sulphur . The volume of 0.03 M KMnO4 required to Oxidize the same amount of H2S gas to Sulphur, in acidic medium is.
SOLUTION:
ILLUSTRATIVE EXAMPLE (13): What volume of 0.4 M Na2S2O3 would be required to react with the I2 liberated by adding excess of KI to 50 ml of 0.2 M CuSO4? (Ans= 25 ml).
ILLUSTRATIVE EXAMPLE (13): What volume of 0.4 M Na2S2O3 would be required to react with the I2 liberated by adding excess of KI to 50 ml of 0.2 M CuSO4? (Ans= 25 ml).
No comments:
Post a Comment